High Vacuum System Engineering Calculations 2.75" Conflat High Vacuum System Design Iteration #2

Transitional Flow with Deuterium at 20C

CONDUCTANCE CALCULATIONS – TRANSITIONAL FLOW (For Use with Deuterium Injected Fusor Systems @ 10^-2 Torr)

1.) Diffusion Pump

→ Max Pumping Speed of Diffusion Pump @ 10^-2 torr

$$\rightarrow S_{diff(k)} = 100 \ l/sec$$

2.) Transitional Flow Conductance for Diffusion Pump to 2.75" Conflat Adapter Plate

→ Conductance of Pipes in Transitional Flow

$$C_k = C_m (0.0736 \frac{D}{\lambda} + \frac{1 + 1.25D/\lambda}{1 + 1.55D/\lambda})$$

C_k = transitional flow conductance

 C_m = conductance for molecular flow = $C_{adapter}$ = 249.147 l/s

D = diameter (cm) = 3.556

 λ = mean free path at average pressure (P=10^-2 torr) (cm) = 0.5

$$C_k = 335.350 \ l/sec$$

$$\rightarrow C_{k(adapter)} = 335.350 \ l/sec$$

3.) Transitional Flow Conductance for 2.75" Conflat Inline Poppet Valve

→ Conductance of Pipes in Transitional Flow

$$C_k = C_m (0.0736 \frac{D}{\lambda} + \frac{1 + 1.25D/\lambda}{1 + 1.55D/\lambda})$$

C_k = transitional flow conductance

 C_m = conductance for molecular flow = $C_{poppet\ valve}$ = 91.932 l/s

D = diameter (cm) = 3.556

 λ = mean free path at average pressure (P=10^-2 torr) (cm) = 0.5

$$C_k = 123.740 \ l/sec$$

$$\rightarrow C_{k(poppet_valve)} = 123.740 \ l/sec$$

4.) Transitional Flow Conductance for 2.75" Conflat Butterfly Valve

→ Conductance of Pipes in Transitional Flow

$$C_k = C_m (0.0736 \frac{D}{\lambda} + \frac{1 + 1.25D/\lambda}{1 + 1.55D/\lambda})$$

C_k = transitional flow conductance

 C_m = conductance for molecular flow = $C_{butterfly\ valve}$ = 163.939 l/s

D = diameter (cm) = 3.556

 λ = mean free path at average pressure (P=10^-2 torr) (cm) = 0.5

$$C_k = 220.661 \ l/sec$$

$\rightarrow \frac{C_{k(butterfly_valve)}}{220.661} = \frac{220.661}{l/sec}$

5.) Transitional Flow Conductance for 2.75" Conflat 4-Way Cross

→ Conductance of Pipes in Transitional Flow

$$C_k = C_m (0.0736 \frac{D}{\lambda} + \frac{1 + 1.25D/\lambda}{1 + 1.55D/\lambda})$$

C_k = transitional flow conductance

 C_m = conductance for molecular flow = C_{cross} = 108.857 l/s

D = diameter (cm) = 3.556

 λ = mean free path at average pressure (P=10^-2 torr) (cm) = 0.5

 $C_k = 146.521 \ l/sec$

- $\rightarrow C_{k(cross)} = 146.521 \ l/sec$
- 6.) Total System Conductance
- → Conductance of Pipeline

$$\frac{1}{C_{k(pipeline)}} = \frac{1}{C_{k(adapter)}} + \frac{1}{C_{k(poppet_valve)}} + \frac{1}{C_{k(butterfly_valve)}} + \frac{1}{C_{k(cross)}} + \frac{1}{C_{k(pipeline)}} = \frac{1}{335.350} + \frac{1}{123.740} + \frac{1}{220.661} + \frac{1}{146.521} + \frac{1}{146.521} + \frac{1}{146.521}$$

$$C_{k(pipeline)} = 11.760 \ l/sec$$

- $\rightarrow C_{k(pipeline)} = 44.603 \ l/sec$
- → Effective Pumping Speed of the System

$$\frac{1}{S_{e(k)}} = \frac{1}{C_{k(pipeline)}} + \frac{1}{S_{diff(k)}}$$

$$S_{e(k)} = \frac{C_{k(pipeline)} \times S_{diff(k)}}{C_{k(pipeline)} + S_{diff(k)}}$$

$$C_{k(pipeline)} = 8.737 \ l/s$$

$$S_{diff(k)} = 100 \ l/s$$

$$S_{e(k)} = 9.103 \ l/s$$

 $\Rightarrow S_{e(k)} = 30.845 \ l/sec$