Applied Ion Systems
Molfow+ Simulations of a Small Scale Multipurpose
High Vacuum System
Facet Parameter Assignments

I. Diffusion Pump Inlet and O-Ring

Simulation 1: Unbaked System, Pumped for <1 Hour
Pumping Speed – 600 l/s
Total Outgassing Load (Viton) – 9.708×10^{-5} mbar*l/s

Simulation 2: Unbaked System, Pumped for >24 Hours
Pumping Speed – 600 l/s
Total Outgassing Load (Viton) – 6.049×10^{-6} mbar*l/s

Simulation 3: Baked System, Pumped for >24 Hours
Pumping Speed – 600 l/s
Total Outgassing Load (Viton) – 3.774×10^{-6} mbar*l/s

II. Adapter Plate 1
Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Aluminum) – 1.066×10^{-6} mbar*l/s/cm^2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Aluminum) – 1.333×10^{-10} mbar*l/s/cm^2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Aluminum) – 6.665×10^{-13} mbar*l/s/cm^2

III. Adapter Plate 1 O-Ring and Adapter Plate 1 Top Surface
Simulation 1: Unbaked System, Pumped for <1 Hour
Total Outgassing Load (Viton and Aluminum) – 3.035 x 10^-4 mbar*l/s

Simulation 2: Unbaked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Aluminum) – 7.431 x 10^-6 mbar*l/s

Simulation 3: Baked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Aluminum) – 5.535 x 10^-6 mbar*l/s

IV. Baffle

Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Stainless Steel) – 6.665 x 10^-8 mbar*l/s/cm^2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 1.333 x 10^-10 mbar*l/s/cm^2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 3.999 x 10^-13 mbar*l/s/cm^2

V. Baffle O-Ring and Adapter Plate 2 Bottom Surface
Simulation 1: Unbaked System, Pumped for <1 Hour
Total Outgassing Load (Viton and Aluminum) – 3.527×10^{-4} mbar*l/s

Simulation 2: Unbaked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Aluminum) – 7.499×10^{-6} mbar*l/s

Simulation 3: Baked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Aluminum) – 6.599×10^{-6} mbar*l/s

VI. Adapter Plate 2

Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Aluminum) – 1.066×10^{-6} mbar*l/s/cm2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Aluminum) – 1.333×10^{-10} mbar*l/s/cm2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Aluminum) – 6.665×10^{-13} mbar*l/s/cm2

VII. Adapter Plate 2 O-Ring and Zero Clearance Reducer Bottom Surface

Simulation 1: Unbaked System, Pumped for <1 Hour
Total Outgassing Load (Viton and Stainless Steel) – 4.484×10^{-5} mbar*l/s

Simulation 2: Unbaked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Stainless Steel) – 4.055×10^{-6} mbar*l/s

Simulation 3: Baked System, Pumped for >24 Hours
Total Outgassing Load (Viton and Stainless Steel) – 3.140×10^{-6} mbar*l/s

VIII. Zero Clearance Reducer
Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Stainless Steel) – 6.665×10^{-8} mbar*l/s/cm^2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 1.333×10^{-10} mbar*l/s/cm^2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 3.999×10^{-13} mbar*l/s/cm^2

IX. Four-Way Cross
Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Stainless Steel) – 6.665×10^{-8} mbar*l/s/cm2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 1.333×10^{-10} mbar*l/s/cm2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 3.999×10^{-13} mbar*l/s/cm2

X. Gate Valve

Simulation 1: Unbaked System, Pumped for <1 Hour
Total Combined Outgassing Load (O-rings and Stainless Steel) – 2.454×10^{-5} mbar*l/s

Simulation 2: Unbaked System, Pumped for >24 Hours
Total Combined Outgassing Load (O-rings and Stainless Steel) – 1.652×10^{-6} mbar*l/s

Simulation 3: Baked System, Pumped for >24 Hours
Total Combined Outgassing Load (O-rings and Stainless Steel) – 1.168×10^{-6} mbar*l/s

XI. Five-Way Cross
Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Stainless Steel) – 6.665 x 10^-8 mbar*l/s/cm^2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 1.333 x 10^-10 mbar*l/s/cm^2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Stainless Steel) – 3.999 x 10^-13 mbar*l/s/cm^2

XII. Viewport
Simulation 1: Unbaked System, Pumped for <1 Hour
Outgassing Rate (Glass) – 1.333 x 10^-7 mbar*l/s/cm^2

Simulation 2: Unbaked System, Pumped for >24 Hours
Outgassing Rate (Glass) – 6.665 x 10^-9 mbar*l/s/cm^2

Simulation 3: Baked System, Pumped for >24 Hours
Outgassing Rate (Glass) – 2.666 x 10^-9 mbar*l/s/cm^2